首頁 > 反演水深、判釋水稻田 福衛五號影像多元應用
:::

反演水深、判釋水稻田 福衛五號影像多元應用

光學遙測衛星「福爾摩沙衛星五號」在2017年8月升空、2018年9月正式銷售影像。除了常見的研究地表覆蓋、土地利用或環境變遷監測,一些研究者也發展出多元應用,中央大學和臺灣大學的研究團隊分別利用福衛五號影像反演水底地形、判釋水稻田面積。
 
 
福衛五號衛星於2018年3月2日所攝得東沙環礁影像。(圖/國家太空中心提供)
▲福衛五號衛星於2018年3月2日所攝得東沙環礁影像。(圖/國家太空中心提供)
 
「透視」海底 用福五影像逆推東沙環礁水底地形
 
中央大學太空及遙測中心的副教授黃智遠、副教授任玄及副教授曾國欣選定東沙環礁,測試福衛五號影像反演水底地形的能力。成果顯示,在訓練資料品質佳的情況下,以福五影像建置水底地形的精度與超高解析度衛星影像的成果相當,可協助內政部產製電子航行圖、環境監測、生物棲地研究等。 

傳統常以船隻搭載聲納,或飛機搭載光達的方式量測水深,這兩種方式皆須現地量測,精度高,但成本也高,且淺海與爭議水區的量測會受限。多光譜光學衛星影像能穿透約20公尺深的潔淨水體,成為廣泛調查淺水域的潛力方式。

要以衛星光譜影像反演水深,仍需收集訓練資料(例如地形的現地量測資訊)當作「教材」,讓電腦建立正確的模式參數。「沒有太多人為擾動影響、卻又要有高品質的訓練資料 ,同時符合這兩個條件的就選東沙環礁了!」東沙環礁有精密的光達測深資料,還有海水潔淨、淺水域面積廣大等優點。

此項技術的訓練方式是,輸入衛星影像各波段數值(主要為透水較佳的綠光波段)及其對應的實際水深訓練網路,網路模式訓練完成之後,輸入目標區域的衛星影像數值,就能推算出每個像素對應的水深資訊。

為了衡量福五影像的表現,團隊也拿超高解析度商用衛星WorldView2的影像反演水深,比較兩者成果。福五反演的水深成果精度達1.62公尺,雖略遜於WorldView2的1.26公尺,但相差不遠。

黃智遠解釋,相較於房屋、橋梁等地物地貌,水下自然地形的局部變化通常較小,所以對於衛星影像空間解析度的要求也較低。在反演水深的應用上,使用福五或超高解析度衛星的差異不大,福五反演僅局部區域比實際地形略深。

光譜反演的挑戰在於訓練資料蒐集困難,不過,透過衛星影像產製水深還有另一種稱為「立體對測量」的方法。福衛五號可以對地「立體取像」——人的視覺因左右眼視角差異而能感知立體,資料也能整合不同角度的衛星影像產生視差,萃取出目標物的數值地形模型,再以此當作訓練資料,進行模式訓練、反演水底地形。

過去團隊與內政部合作,在東海南海的許多島礁進行水深反演,已累積起一套決策樹,考量目標區域具備的資料庫、資料品質、成本等,可為不同地區挑選、整合不同的水深產製方式。
 
東沙環礁水底地形。(圖/研究團隊提供)
▲東沙環礁水底地形。(圖/研究團隊提供)
 
雙衛星搭檔 提高水稻田判釋精度   

水稻田分佈判釋是行政院農委會農糧署年度重要工作項目,農糧署與臺灣大學理學院空間資訊研究中心教授朱子豪、遙測及資料加值組組長張家豪合作,以福衛五號影像結合合成孔徑雷達衛星影像判釋水稻田,正確性達92%,大幅提高偵測精度。 

由於雲林有充足的基礎資料可供驗證與訓練模型,研究團隊選定雲林做為研究區域,試驗福五的影像用在水稻田判釋可達多少能力。 

團隊使用福衛五號影像,搭配22組歐洲太空總署合成孔徑雷達衛星「Sentinel-1」的開放資料,並試驗了三種方法:僅使用福五(光學)影像、僅用雷達影像、兩者相互搭配。結果顯示,整合兩者的效果最好,判釋正確性最高可達到 92%,高於單用光學或雷達影像的90%、80%。

「光學衛星最大的限制就是雲!」雲會遮擋目標、影響判釋,而農作物判釋的取像時機又相當關鍵,取像時有雲就沒輒了;合成孔徑雷達衛星會主動發射微波到地面再接收反射波,可穿透雲層,不受雲覆與日照影響,可補強不同時期影像,取得水稻田從插秧、成長、結穗的時序變化資訊。

本研究的突破在於,只用了單一分類器全自動判別的條件下,偵測精度大幅提升,更是首度只用一個時間點、單張光學影像就達到了。團隊對此也相當興奮,「可能因為福五當時在11月取像,剛好是水稻結穗時,影像特徵與其他作物差異較大。」張家豪解釋。 

推測了面積,可以進一步推估產量嗎?「一公頃稻作能收成1,000公斤或4,000公斤,有太多因素影響了。」朱子豪說。溫度、溼度、施肥、天災、病蟲害等都會影響收成,此類研究在平遂的情況下可大致估產,尚難達成精確估產。
 
 
掌握物候特徵是判釋關鍵

未來若要擴大範圍,判釋全國水稻田面積,由於各地農民栽種時序、田間管理多變,如何選擇適合的取像時間會是一大挑戰;若要擴展到判釋其他作物,則得視其生長特徵進行更多的分析比對。

張家豪舉例,判別柑橘類的常年果樹、葉菜類極困難,果樹在光學影像上看起永遠是綠色一片,也無足夠的栽種方式差異、生長週期特徵和其他特性可區辨;檳榔、椰子、香蕉從空中看都是放射狀葉片,雖可參考栽種密度與高度,但影像的空間解析度也得提高至60公分才能精確判別;蔥、蒜皆屬旱作,需要空間解析度優於60公分的影像,搭配如地區性栽種時序、田埂排列鮮明的地表特徵,有機會判釋成功,「但要是田裡混作個青江菜,就分不出來了。」

梅樹是另個成功案例,它在12月下旬會落葉,隔年2月開花長葉結果。團隊曾執行判釋南投水里梅樹的研究,標定幾個時間取像,「若有某個區域在十月是綠葉、入冬出現裸露地特徵、然後變得白白的(開花)、四月又出現綠葉,那就很可能是梅樹!」但李子與梅樹的影像呈現類似,生長期也相近,要是沒在生長期重疊前順利取像,就會混淆兩者。

以衛星影像判釋作物不光是直白的「看照片」或分析光譜,掌握作物的「物候特徵」才是關鍵。


審閱:黃智遠副教授;朱子豪教授、張家豪組長
 
推薦文章