目前生活上已經可以看到各式各樣發光二極體(LED)商品的應用,例如交通號誌、機車尾燈、汽車頭燈、路燈、電腦指示燈、手電筒、LED 背光源等。這些商品除了必要的 LED 晶片製程外,都必須經過一道非常重要的程序--封裝。
LED 封裝功能在於提供 LED 晶片電、光、熱上的必要支援。例如半導體元件長時間暴露在大氣中,會受到水汽或其他環境中的化學物質影響而老化,造成特性的衰退。選用高透明度的環氧樹酯包覆發光二極體,是一個有效隔絕大氣的方法。另外選用適合的基材可以提供 LED 元件足夠的機械保護,使 LED 的可靠度大幅提升。目前主要用於 LED 的基材,有導線架、金屬基板、低溫共燒陶瓷基板等,其中以低溫共燒陶瓷基板的熱膨脹係數與半導體最為接近,可提供一個可靠度高的 LED 基材。
除此之外,為了達到更亮更省電的目標,LED 封裝還需要有良好的散熱性及光萃取效率,尤其散熱問題更是值得重視。若未能及時使熱散出,累積在元件中的熱對元件的特性、壽命及可靠度都會產生不良的影響。光學設計也是封裝程序中重要的一環,如何更有效地把光導出,發光角度及方向都是設計上的重點。相較於高亮度 LED 封裝,白光 LED 的封裝技術更是複雜,除了熱的問題以外,還要考量色溫、演色係數、螢光粉等問題。
LED 封裝技術課題
高透明度光學 LED 晶片封裝鏡 目前用在 LED 晶片的光學鏡片封裝,以使用環氧樹酯系列材料為主。但因為環氧樹酯是高分子材料,主要的缺點是易老化、不耐熱及光的特性不佳,又會因為吸收可見光(紫外光為甚)產生高分子鏈段交聯的現象,導致透明度下降。目前 LED 產業積極尋求一種可以取代環氧樹酯類的材料,但不會有透明度因老化而下降的問題,例如使用氧化矽系列的材料。
LED 晶片的固晶材料 固晶材料的選擇也是一個 LED 可靠度上重要的關鍵。過去 LED 晶片大多以銀膠把 LED 晶片鍵結在基材上,但因為 LED 正朝向大功率、高照明亮度的方向前進,銀膠的散熱性及鍵結強度已無法應付高功率 LED 的需求,所以目前封裝業者已慢慢朝向使用金屬的軟銲材料做 LED 晶片的鍵結。其中以金錫共晶合金的成分最受到注意,因為可以用無助銲劑的方式進行,避免使用助銲劑而引發的後續清洗問題。
散熱
近幾年來,LED 產業在封裝技術上的發展重點,在於密不可分的低熱阻抗及高可靠度。為了因應 LED 在照明領域的特性需求,高亮度 LED 晶片製備技術的開發,積極地朝向高 lm(流明)/W(瓦)的發光效率努力。此外,也嘗試以高功率的輸入來提升 LED 的亮度,在提高輸入功率的同時,伴隨著產生更多的熱。因此,若無法有效提升散熱性,就算 LED 晶片的效能再好,也會因元件產生的高溫使可靠度大幅降低。
目前 LED 的發光效率大約是 15 ~ 20%,也就是輸入的電能有 15 ~ 20%會轉換成光能釋出,其餘的 80 ~ 85% 則是轉變成熱能,愈高功率的 LED 產生的熱能也愈多。若是封裝結構無法有效地使熱排出,便會不斷地累積在元件內部,使 LED 操作時的接點溫度上升,導致發光效率降低及發光波長變短,壽命也會隨之減少。
目前覆晶式的晶片封裝很吸引人們的目光,因為它能提供一個較好的散熱系統,主動發光層產生的熱可由下方大面積的銲料凸塊向外傳導,進而提高 LED 發光的效率。
以覆晶式封裝的 Lumileds 高密度 LED 的陣列組裝為例, LED 由覆晶的方式組裝在一個矽載板上之後,再把整個矽載板以銀膠貼在鍍銀的銅塊上,LED 產生的熱可由覆晶結構中的銲料凸塊,再經由矽載板導入銅塊材,藉由銅良好的散熱係數,快速地把熱傳導出去,其中銅與矽載板的散熱係數分別是 400 W/mK 及 150 W/mK。在整個覆晶結構中,矽載板與銅塊間的接合材料可以使用軟銲金屬,例如導熱係數較佳的銦金屬,導熱係數是 80 W/mK,把銦金屬做為固晶材料與銅塊的連結,整體封裝的散熱效果會更好。
要解決 LED 散熱的問題,當然最根本的方法就是從 LED 晶片本身著手,提升 LED 晶片的發光效率,以減少熱能的產生,使 LED 點亮時的接點溫度下降。另一方面也可由封裝結構的設計著手,選用高散熱係數的封裝材料,以降低整體結構的熱阻抗,也可以有效地降低接點溫度,使 LED 元件維持預期的高可靠度、長壽命等特性。
目前全球都期望把 LED 運用到日常生活中,以落實節能減碳的環保概念。但在實際應用上卻受到散熱因素的限制,LED 晶片產生的熱會嚴重影響到元件光性、可靠度、壽命等特性。尤其在高功率、高亮度 LED 照明上的應用更是明顯,如室內照明、車頭燈、路燈等,在高功率的能量注入時,產生的熱能也相當可觀。因此都需要外加一個龐大的散熱系統,才能夠維持 LED 元件的可靠度,但這也使得了成本大幅提升,降低了 LED 在市場上的競爭力。