跳到主要內容
:::
登入
註冊
網站導覽
展開搜尋
全站搜尋
熱門關鍵字:
半導體
精準醫療
太空
煙火
關閉搜尋
您的瀏覽器不支援此script語法,請點選
搜尋
使用搜尋功能。
分類
分類項目
關閉分類項目
地理
天文
化學
醫學
科技
社會科學
人類文明
地科
心理
物理
數學
環境
生物
生活科學
醫療
地球科學
Menu
關於我們
文章
熱門文章
最新文章
精選文章
科學專題
科發月刊
影音
TechTalk
科普影片
活動
學生專區
夥伴
認證
公務人員
網站導覽
English
首長信箱
常見問答
雙語詞彙
關於我們
文章
文章
熱門文章
最新文章
精選文章
科學專題
科發月刊
影音
影音
TechTalk
科普影片
活動
學生專區
夥伴
認證
認證
公務人員
:::
首頁
Pleace Login!
×
請先登入
facebook
twitter
plurk
line
中
列印
書籤
:::
你所不知道的太陽系–探索太陽系的邊緣
103/05/02
瀏覽次數
4844
王祥宇
|
中央研究院天文與天文物理研究所副所長
太陽系的組成以及它的歷史一直是人類想要了解的問題。長期以來人類對於太陽系內的行星進行了許多的觀測與探測,獲取詳細的資料。但是對於在太陽系外圍的冰冷天體卻受限於觀測能力而所知有限。在太陽系外圍的這些陰暗天體,有些從太陽系形成早期就很穩定的在目前的軌道運行、有些卻有可能從太陽系內部被行星的引力拋到太陽系的外圍,有些甚至有可能是由其他的星體捕捉而來。這些冰冷的天體就像一本太陽系的史書,等著人類去探索與了解。
講演內容綱要
四月18日晚間,中央研究院天文與天文物理研究所的王祥宇副所長向我們介紹了「你所不知道的太陽系」,深入淺出地說明了科學家在「探索太陽系邊緣」這個課題上的新發展,和我們分享了近年來天文學家在離太陽比較遠的地方,所作出令人驚訝的發現。在過去這段時間中,天文學家發現了非常多的太陽系小天體,也因為這些天體的存在,讓我們顛覆了以往對太陽系行星的傳統認知,也才知道為什麼只剩下八個行星,以及為什麼會有「矮行星」。
今(2014)年3月底,天文學家宣布太陽系發現新的矮行星,可能會再次顛覆天文學長久以來的傳統學說。小時候的教科書告訴我們,太陽系有「九大行星」,而近年來天文學家替太陽系下了新的定義,要成為行星的條件,必須要繞著恆星轉,而且要有足夠的質量。像是一些橢圓形狀的小行星,就不會被稱為行星。除此之外行星也需要有能力去清除軌道附近的天體,就是因為這個條件,我們才將圓的冥王星剔除在行星層級之外!因為科學家發現更多和冥王星類似的天體在同一個區域,所以現在已經離開「九大」的時代,而成為「八大行星」。(不過孫教授上課,都用「八個」,而不是「八大」,因為這八個行星大小的確差很多!)
研究太陽系的各個天體,一開始都是為了瞭解太陽系的組成。但是彗星從哪裡來?三、四百年來天文學家觀測夜空的時候,偶而會看到一些比較明亮的彗星。經過計算,這些彗星的軌道,通常都距離太陽非常遠。譬如大家熟知的哈雷彗星,遠日點延伸到海王星軌道以外,到達冥王星軌道附近。另一個大家比較熟悉的百武彗星,軌道非常橢圓,離海王星幾乎有四倍以上的距離。
因為這些彗星的存在,科學家就產生疑惑,是不是有類似彗星的天體,存在於太陽系外圍的區域?這些區域應該非常的寒冷。王祥宇老師提供科學家的想像畫面,假若我們從冥王星的角度來看太陽系,我們看到的畫面,會非常讓人震驚,因為大部分的類地行星好像全部糊在一起,距離非常近。
我們要如何偵測小天體呢?我們對著一片漆黑的天空觀測,第一天看、第二天也看同樣的地方,連續觀測,我們利用電腦程式將兩幅影像相減,觀察哪些天體會動,並量度其位置的變化。我們對這些天體進行數據分析,去量測古柏帶的結構,利用橢圓率來探討它們和其他行星的差異。以「類冥天體」(plutinos)為例,就是像冥王星會和海王星產生「共振」軌道的天體,如冥王星繞太陽公轉兩圈,海王星就剛好轉三圈。這個共振的效果,確保兩者不會相撞。除三比二共振外,還有二比一共振,這些天體的公轉方式,和海王星的公轉週期有密切的關係。此外還有「散射盤」天體,距離太陽愈近,橢圓率越小。距離太陽系越遠,橢圓率就變得非常大,這些天體的近日點分布,通常在30到40個天文單位之間。
天文學家計算得知,冥王星和海王星的公轉週期如果不是整數比例,兩者可能會相撞消失。而在散射盤中不同的天體的橢圓率也不相同,天文學家覺得很奇怪,怎麼會從本來類似其他行星的圓形軌道,變成越來越多的橢圓形軌道?原因是什麼?
一般相信太陽系起源於一團雲氣,中心的太陽形成之後,殘餘的盤狀雲氣繞著中心的太陽繼續旋轉,在其中逐漸形成行星。照理說這些天體會以近似於圓形的軌道運行。在整個系統當中,有很大的質量在中間,而在旋轉的過程中,行星慢慢會把它附近的石頭和灰塵吸進來,自己愈來愈大,照理說不應該會出現橢圓形的軌道。
透過理論模擬的方式,天文學家相信在早期太陽系的形成過程中,曾經有過很大的變動,這個學說稱為「尼斯」模型:在太陽系早期形成的時候,四大行星(木星、土星、天王星、海王星)距離太陽較近,形成之後,由於它們距離太近,因為引力的作用,讓軌道變得不穩定,這讓木星往裡面移動,而在裡面的其他大行星往外移動,讓原來附近沒有行星的小天體,被大行星撞開,軌道從圓形變成橢圓,也順便將原來靠近太陽的天體清理乾淨,轉移到外圍來。
我們如果嘗試把軌道繪製得比較清楚,我們會發現,這些小天體分布的範圍其實擴展得非常外面,可以到離太陽最遠1,000個天文單位的地方,達到「歐特雲」的地方。什麼是歐特雲呢?「歐特雲」是到目前為止天文學家都還不瞭解的東西,現在推斷,歐特雲在外面是均勻的球狀分布,在裡面則是盤狀的結構。這些天體被認為是從很早期太陽系形成的時候,不斷從內部被驅趕到外面的小天體,到幾萬個天文單位的地方。原先圓形的軌道變成橢圓形,需要是外力的影響,而外力的來源,可能有一個X行星在外面,如果真有一個距離我們100天文單位的行星,它就有可能去干擾附近的天體,形成像是Sedna這些大橢圓軌道的天體,這些天體有相似的近日點,距離太陽100個天文單位左右。
但也有別的可能,如果有另外一顆恆星通過附近,也會把天體往外面拉;另一個可能性,則是太陽系形成的初期,可能是誕生在一個星團之中,一開始有許多恆星在附近,當太陽形成的時候這些恆星會慢慢離開太陽系,但是在初期的時候這些恆星會產生很多重力影響,把一些小天體的軌道變成距離太陽比較遠的軌道。還有另一個可能,這些小天體是從星際裡面去捕捉來的,本來小天體隸屬於另一個行星系統,當被拉過來後,它還是維持傾斜的軌道方向。
如果我們去看歐特雲和我們古柏帶的大小,我們會發現真的有可能在早期形成的時候,太陽旁邊曾有很多天體。而這些天體的重力,會使得太陽系外圍天體產生軌道的變化,變成像是Sedna以大橢圓軌道繞行太陽系外圍的形式。而理論計算的結果,我們會發現有些推斷蠻符合觀測到的現象。但我們需要去探索更多類似Sedna的天體,來確認到底太陽系形成過程中,外圍發生過什麼狀況。
中研院天文所在2009年1月開始進行海王星外自動掩星普查計畫(TAOS-2),並於2012年的8月開始進行相機感測晶片的設計,在今(2014)年10月完成望遠鏡安裝,在明(2015)年12月完成高速相機,而可以在2016年開始科學觀測,到2020年整體計畫完成。科學探索是無止境的,永遠都可能有新的發現改寫我們的教科書。
觀測(8)
行星(36)
掩星(9)
太陽系(9)
推薦文章
113/09/30
從歷史中挖掘未來:綠豆的基因祕密與氣候生存法則
黃宜稜
|
科技大觀園特約編輯
儲存書籤
113/09/30
為什麼 COVID-19 沒有引發糧食危機?——揭開全球糧食市場的抗疫祕訣
劉品萱
|
科技大觀園特約編輯
儲存書籤
113/11/29
必須持續開著警示燈 提醒大眾關注科學領域中的偏見問題
單文婷
|
國立臺灣藝術大學影音創作與數位媒體產業研究所
儲存書籤
113/06/19
永續的碳循環產業鏈,讓二氧化碳不再人人喊「減」
陳彥諺
|
科技大觀園特約編輯
儲存書籤
OPEN
關於我們
關於我們
文章
熱門文章
最新文章
精選文章
科學專題
影音
科普影片
TechTalk
活動
活動
學生專區
學生專區
回頂部