「巨量資料技術不只是停留在提供統計分析的結果供人類做決策,未來要直接跳過分析,直接推薦你最佳選擇。電腦推薦的最佳選擇要逐漸比你自己做出的決定更快、更準、更好。」資工人在大數據應用上是如何將預測模型(如演算法)以程式呈現,直接做成一個可被使用的工具。例如目前的高速交易(high speed trading),即時競價(real time bidding)都是電腦取代人類決策的例子。
以 Google Map 而言,由於用戶量大,Google 能夠搜集到的資料回報量也就隨之水漲船高,進而運用回報資料更加優化其地圖服務、提供更精準的資料和分析結果,這點是其他新進場的地圖公司較難和 Google 比拼的原因。目前線上地圖目前提供的「路徑規劃」功能,從僅僅計算兩點距離告知「最短路徑」,到未來將能夠加入交通尖峰時間狀況,意外事故,甚至天氣、群眾活動等事件的資料提供「最佳路徑」的選擇,林守德認為多樣化的資料,就能協助讓運算模型發展得更為精緻,而這個優化的過程正是決策工具如何不斷優化的關鍵。