探究題目與動機
國二上學期教到「波」,在講波的時候,我們當時難以理解,因為波是抽象的概念,特別 是像聲波,是無法用肉眼直觀的。為此,我們想製作能將抽象轉為具體的示範工具,讓「聲 波」具體化,而不僅僅是課本上靜止的圖片;讓波動起來,才能簡單又生動地傳達波的意涵。 而我們也在網路上找到了一種名為”肯特管”的科學教具,正符合我們所期盼的功能。然而 高中所使用的玻璃真空肯特管有相當的條件以及技術,一組都要萬元起跳,因此我們也想找 是否有其替代方案,方便在國中理化的課程中做應用。
如此特別的科學教具也引起我們的好奇心,想要更進一步來探究肯特管的各種變因,並 改良傳統肯特管,看看各種情況下肯特管的表現情形並普及。
探究目的與假設
了解肯特管中的聲波的成像樣貌
1. 改變肯特管中「保麗龍球的大小」,對聲波的顯現有何影響?
2. 改變肯特管的「粗細材質」,對聲波的顯現有何影響?
3. 改變「聲源」,對聲波的顯現有何影響?
4. 改變「頻率」,對聲波的顯現有何影響?
5. 改變「音量」,對聲波的顯現有何影響
探究方法與驗證步驟
實驗一、改變肯特管中「保麗龍球的大小」
a. 使用 1mm、3mm、9mm、20mm 直徑的保麗龍球,填入玻璃量筒肯特管。
b. 用嘴向肯特管內發聲,其他因素是為控制變因。
c. 觀察聲波的樣貌。
結果:
Table1.不同保麗龍球大小實驗結果
Fig.1 保麗龍球 1mm、Fig.2 保麗龍球 3mm、Fig.3 保麗龍球 9mm、Fig.4 保麗龍球 20mm
我們分別使用不同大小的保麗龍球進行實驗。發現若介質的質量愈重,體積愈大,效果 愈不明顯;同理,愈輕則反之。也因此為了改善日後的實驗結果,我們決定使用效果最明顯 的 1mm 的保麗龍球進行後續的實驗。
實驗二、改變肯特管的「粗細材質」
a. 使用不同材質(玻璃量筒、塑膠量筒、吸管、水族箱管、水管)製作肯特管。
b. 根據實驗一填入 1mm 保麗龍球。
c. 用嘴向肯特管內發聲,其他因素是為控制變因。
d. 觀察聲波的樣貌。
結果:
Table2.不同材質肯特管實驗結果
過粗的塑膠水管,口徑太大,因此我們對管內發聲的時候,能量會不集中(能量散佈,每 體積單位分配到過少能量),因此介質難以震動。另外,吸管材質軟,管壁會吸收能量,而且 管內體積及口徑太小,吸附嘴吐出來的水氣,黏住保麗龍球,要看到震動可說是難上加難。 而同樣都是 25mL 的量筒,玻璃量筒震動較明顯可能是因為管壁材質夠硬,使得能量較大且 明顯,且塑膠量筒透明度不高,較難觀察。用嘴的情況下以水族箱管最適合。
Fig.5 塑膠量筒肯特管、Fig.6 吸管肯特管、Fig.7 水族箱管肯特管、Fig.8 透明水管肯特管
實驗三、改變「聲源」,對聲波的顯現有何影響
a. 使用不同聲源(人聲、機械聲)製作肯特管
b. 用手機 app 發出固定頻率聲源
c. 連接長筒狀喇叭
d. 和人聲肯特管做比較,觀察聲波的樣貌。
結果:
Fig.9 人聲肯特管、Fig.10 機械聲肯特管
Table3.不同聲源肯特管實驗結果
過去用人聲常有水氣的困擾,而且人聲容易忽大忽小,且無法像樂器發出固定頻率,無 法準確觀察,改用機械聲再搭配喇叭,可控制音量且連續撥放固定頻率,增加更多可用性, 並且能看到波峰更是令我們驚奇。
實驗四、改變「頻率」,對聲波的顯現有何影響
a. 利用機械式發聲,控制頻率從 300Hz-990Hz,在相同音量下發音。
b. 觀察聲波的樣貌。
結果:
Fig.11 頻率 330Hz、Fig.12 頻率 420Hz、Fig.13 頻率 420Hz 局部放大、Fig.14 頻率 660Hz
首先我們發現在頻率 330Hz 有最明顯的波峰,同時 660Hz 有兩個明顯波峰、990Hz 有三個明顯波峰,這證明了課本內的公式(聲速=頻率 X 波長),頻率和波長成反比。我們使用 的透明水管為 50cm,在相同溫度下聲速相同,根據 V=331+0.6T,實驗時溫度為 12℃,所 以 V=338.2m/s,在 330Hz 情況下可以在長度 50cm 管內找到完整波峰,該長度為 0.5λ, 所以 λ=100cm=1m,代入 V=f X λ 即 V=330*1=330,和理論值 338.2 相距不遠。此外在 頻率增加時,所看到的波峰越來越短,另外再 390 以後可逐漸發現靠近喇叭處出現較小的波 峰,如 Fig.13 所示,此為第二個波之一部分。
Fig.15 頻率 330Hz 式意圖、Fig.16 頻率 360Hz 式意圖、Fig.17 頻率 420Hz 式意圖、Fig.18 頻率 660Hz 式意圖
實驗五、改變「音量」,對聲波的顯現有何影響
a. 利用手機音源鍵控制音量,由滿格到 2 格
b. 觀察聲波的樣貌。
結果
Fig.19 音量 10 格、Fig.20 音量 6 格、Fig.21 音量 2 格
發現聲音越大聲,保麗 龍球振動高度越高,也證明 音量和振幅成正比關係。從 七顆球高度降至 1 顆保麗龍 球的高度。
Fig.22 音量大小示意圖
結論與生活應用
藉由試做肯特管,我們可以基本地發現:
1. 當向管中發聲時,肯特管中的 1mm 保利龍球會跳動並堆積在某些相隔固定距離的點,在 數量上,形成疏密之分;在形狀上,形成類似橫波高低起伏的樣貌。
2. 若聲源為人聲,音量會過小,導致波不明顯,音頻也無法精確固定。故本實驗中肯特管的 聲源皆為手機應用程式之穩定音頻。
藉由使用機械發音試做及試用肯特管,我們可以發現:
1. 若聲源為手機應用程式之穩定音頻,則波的顯現較人聲顯著。
2. 若聲源之頻率愈高,則類似橫波高低起伏的堆積樣貌會愈緊密;反之,則其間隔愈大。
3. 肯特管用玻璃或塑膠作為管壁材質並無太大差別。
4. 成功證明「聲速=頻率 X 波長」、「聲速=331+0.6T」、「振幅與音量的正比關係」。